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Fully developed laminar flow for a horizontal heated curved tube is studied 
numerically. The tube is heated so as to maintain a constant axial temperature 
gradient. A physical model is introduced that accounts for the combined effects of 
both buoyancy and centrifugal force. Results, for a Prandtl number of one, are 
presented for a moderate range of Dean numbers and the product of the Reynolds 
and Rayleigh numbers. Detailed predictions of the flow resistance, the average 
heat-transfer rate and the secondary-flow streamlines are given. Also presented are 
results on the position of the local maxima of shear stress and heat-transfer rate. The 
numerical results reveal that  the mass-flow rate is drastically reduced owing to the 
secondary flow for a given axial pressure gradient. Consequently, the total heat- 
transfer rate decreases for a more-curved tube as well as for a larger axial temperature 
gradient. A flow-regime map is provided to indicate the three basic regimes where 
(i) centrifugal force dominates, (ii) both buoyancy and centrifugal forces are 
important, and (iii) buoyancy force dominates. 

1. Introduction 
Curved tubes and tube bends are extensively employed in many heat-transfer 

devices such as coiled heat exchangers and various heat engines. They are also often 
used to cool electronic equipment subject to  heating during operation. Engineering 
design of these devices requires knowledge of the heat-transfer rate from these types 
of flow given an associated pressure gradient. 

Curvcd-tube flow has been extensively studied both theoretically and experimen- 
tally for almost a century (Barua 1963; Collins & Dennis 1975; Dean 1928; Ito 1969; 
McConalogue & Srivastava 1968; Taylor 1929; Van Dyke 1978). One prominent 
feature of the flow in curved tubes is the secondary flow. 

Centrifugal force, proportional to  the square of the axial velocity, tends to  push 
fluid in the central region near point C in figure 1 towards the outer bend of the coiled 
tube. This induces a pressure gradient directed towards the inner bend of the coiled 
tube. The induced pressure gradient is almost uniform throughout the cross-section of 
the tube. The axial velocity, however, varies widely throughout the cross-section. As 
a result, the centrifugal force acting on the flow varies throughout the cross-section. 
I n  the central region, the centrifugal force assumes its greatest magnitude and is 
roughly in balance with the pressure gradient. The net effect is a smooth movement 
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of fluid axially down the tube. Near the tube wall, the axial velocity is slowed by 
viscous forces. Here the pressure gradient is stronger than the centrifugal force and 
forces fluid inward along the top and the bottom of the tube wall. This inward 
movement along the walls begins a t  the outer bend, $ = 90°, where fluid from the 
core first encounters the wall. It ends a t  the inner bend, 1,4 = 270°, where the two 
streams meet and then separate from the wall. They then move into the central region 
and repeat the cycle of motion. The net effect is to  produce two vortices of equal 
magnitude but of opposite sign, with a horizontal line of symmetry separating them. 

Another feature of curved-tube flow is a direct consequence of the secondary flow. 
The secondary flow circulates the high-kinetic-energy fluid from the central core of 
the tube toward the wall region, where the fluid flows slower. The mixing which results 
delays the flow transitions. Taylor (1929) found that laminar flow can easily be 
maintained up to a Reynolds number (based on radius and mean velocity) of 3000, 
which is three times larger than the critical Reynolds number for the corresponding 
straight tube. 

The parameter characterizing curved-tube flow is the ratio of centrifugal forces to 
viscous forces and is known as the Dean number De = aRe2. a = a / R  denotes the 
curvature ratio and Re is the Reynolds number. Dean’s perturbation analysis, which 
was the first work to  predict theoretically secondary flow in curved tubes, is limited 
to small De. Numerical methods (Collins & Dennis 1975 ; McConalogue & Srivastava 
1968) have been applied to obtain the solution for the flow of intermediate Dean 
numbers. The most careful and comprehensive calculations of the flow for De > 1 are 
those of Collins & Dennis (1975). Their results seem to suggest that  as De + 00, the 
flow consists of an inviscid core combined with a boundary layer near the tube wall 
of thickness O(De-4). The interaction between the core and boundary layer controls 
the flow field. Their observations support the early approximate theories based on 
this idea by Barua (1963) and Ito (1969). I n  particular, the agreement of the flow 
coefficients from the approximate theories, the numerical solutions, and experimental 
measurements appear satisfactory. Objections are raised by Van Dyke (1978), 
however, who considers the importance of the three-dimensional separation near the 
inner bend. This separation is observed experimentally when De % 1 ,  and yet has 
never been modelled in the approximate theory or reproduced by the numerical 
solutions. The problem is still unclear and the solution remains to be f0und.t 

The effects of secondary flow on heat transfer have also been a favourite subject 
for the heat-transfer community. Intuitively, one can picture that the local heat- 
transfer rate increases near the outer bend, where the local flow is similar to a 
stagnation-point flow. Near the inner bend, the heat-transfer rate is a local minimum 
owing to the reversed stagnation-point flow. A perturbation solution by Ozisik & 
Topakoglu (1968) provides information on the variation of heat-transfer rate as a 
function of De and Prandtd number Pr. Their analysis is limited to small De and a ;  
yet their predictions agree well with the experiments of Seban & McLaughlin (1963) 
and Mori & Nakayama (1965). Numerical studies by Akiyama & Cheng (1971), and 
Kalb & Seader (1972), among others (Patankar, Pratap & Spalding 1974; Rabadi, 
Chow & Simon 1979; Simon, Chang & Chow 1977; Yee & Humprey 1979; Zapryanov, 
Christov & Toshov 1980), provides correlations for the effects of De and Pr on 
heat-transfer rates for intermediate Dean numbers. A common finding is that the 

t Dennis (1980) has recently suggested that the discrepancy between Van Dyke’s series solution 
and all previous solutions may be due to ‘flow bifurcation ’. This non-uniqueness of solutions may 
characterize curved-tube flow for large De. 
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secondary flow enhances heat-transfer rates. A common assumption throughout these 
studies is that the momentum and energy equations are uncoupled. 

Morton (1959) showed, however, for the case of a straight tube, that  a secondary 
flow composed of two vertical vortices is generated by the buoyancy force. The 
heat-transfer rate is enhanced by the secondary flow, and is larger than would be 
expected without the buoyancy effect given the same mass-flow rate. Morton found 
that the buoyancy force is proportional to the product ReRa of Reynolds and 
Rayleigh numbers. Since his analysis is a perturbation method, i t  is limited to small 
values of the product ReRa. A similar perturbation analysis for curved-tube flow (Yao 
& Berger 1978) shows that the buoyancy effect can indeed be as important as the 
effect produced by centrifugal force. For a horizontally positioned coiled tube, the 
dividing streamline between two vortices is neither horizontal or vertical. It is the 
result of two perpendicular forces. Consequently, the local maximum and minimum 
heat transfer rates do not necessary occur at the outer and inner bends. Since the 
perturbation solution is valid only for small De and ReRa i t  does not provide 
information about the extra pumping power required to maintain the mass-flow rate 
or give the variation of total heat-transfer rate, as a function of the buoyancy 
modified secondary flow. 

The present paper is motivated by interest in demonstrating the effects of 
buoyancy as well as centrifugal force. A numerical method is applied to study the 
flow field and the temperature distribution in a hydrodynamically and thermally fully 
developed flow in a horizontally positioned coiled tube. The numerical solution is valid 
for intermediate ranges of De and ReRa. The numerical results clearly demonstrate 
that the mass flow rate is drastically reduced owing to the secondary flow under a 
given axial pressure gradient. The total heat-transfer rate decreases for a more-curved 
tube as well as for a larger overheating condition, i.e. a larger axial temperature 
gradient. This is a consequence of the reduction of the mass-flow rate. The numerical 
results provide a flow-regime map to indicate the three basic regimes where (i) 
centrifugal force dominates, (ii) both buoyancy and centrifugal forces are important, 
and (iii) buoyancy force dominates. 

2. Analysis 
A truly general solution to the problem of heat transfer in curved tubes is, a t  

present, an intractable problem. In order to make meaningful progress one must 
simplify the general equations governing the flow as much as possible, using physical 
insight to bring out only the most important terms of the general equations. In  this 
respect, this paper departs from all previous numerical work because it includes a 
buoyancy term in the momentum equations. 

The physical model considered is one with constant axial pressure and temperature 
gradients, with the fluid flowing into the direction of increasing temperature. Such 
conditions are encountered in flow through metal tubes (good thermal conductivity) 
with a constant-heat-flux boundary condition. 

We begin with the basic equations for laminar flow set out in the perturbation 
analysis (Yao & Berger 1978): 

= 0: 1 a(rU) 1 av usin @+ucos @ 
r ar F a @  R + r s i n p  

+--+ _- 
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FIGURE 1. Co-ordinate system. 

where p is the density, v is thc kinematic viscosity, u is the thermal diffusivity, ,!l 
i s  the coefficient of expansion, and g is the acceleration due to gravity. Note that t h e  
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buoyancy forces are approximated by the Boussinesque form in these equations. 
These equations are based on a system of toroidal co-ordinates as shown in figure 1 .  
The radius of the circle in which the tube is coiled is denoted by R and that of 
the tube by a. R8 measures the axial distance from a given plane of reference. 

I n  order to  simplify ( lu-e) ,  we assume fully developed flow. This implies that  
a[/aB = 0 for [ = a, ~ and a. 

Our choice of velocity scale is based upon the given pressure gradient, G. For flow 
through an unheated straight tube, the maximum or centreline velocity is Ga2/4,u. 
This provides a natural velocity scale for the problem; i t  allows immediate, absolute 
comparisons in flow velocity and volume rates of flow for a heated curved tube with 
those of an unheated straight tube for a given radius and pressure gradient. 

Denoting the temperature gradient along the tube by 7, the wall temperature by 
T, and the reference wall temperature by To, we define the following set of dimen- 
sionless variables : 

Gu3 
Pe = ~ (Peclet number), Ra = !@!? (Rayleigh number). 

I r = f / a ,  0 = RB/aRe (co-ordinates), 

w u G 
w=- , u = - ,  v = -  . (velocities), 

Ga2/4,u vla va 
T,-T 

T=- , T, = T,+7R8 (temperature), 
7aPe 

(pressure), } (2) 

U 
a = - De = aRe2 (Dean number), 

R’ I 
v Ga3 

U 4 P  
Pr = - (Prandtl number), Re = __ (Reynolds number), 

This is essentially the non-dimensionalization used in Yao & Berger (1978); the 
differences are in the choice of temperature scale and definition of Dean number. 

Equations ( 2 )  are substituted into ( 1 )  and terms O(a)  or smaller are dropped. The 
pressure terms of (1 b ,  c )  are then eliminated by cross-differentiation. Finally, a 
dimensionless stream function f defined by 

is introduced to  satisfy continuity identically. The following system of four simul- 
taneous partial differential equations then results : 

17 P L M  123 
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FIGURE 2 .  Computation mesh. 

where SZ is the dimensionless vorticity and 

Note that the last expression results from both the non-dimensionalization given in 
( 2 )  and from the assumption that the axial pressure gradient is constant. One must 
keep in mind the constraints imposed by the development of the governing equations 
(4) ,  on Re and a ;  that  is, Re must be small enough to maintain laminar flow and 
O ( a )  + 1. The first term on the right-hand side of (4d)  represents centrifugal force 
and will causc the particles in thc fluid core to move towards the outside bend of the 
tube. Thc second term is due to the buoyancy effect and will cause the cooler fluid 
in the core to  fall. The combined effect generates two vortices whose line of symmetry 
lies a t  an angle with respect to either the horizontal or vertical directions. Note that 
this line of symmetry is curved. Note also that the strength of the buoyancy effect 
is proportional to ReRa (Morton 1959). This means that the buoyancy effect is 
proportional to  both the axial temperature gradient and to the characteristic axial 
velocity. The boundary conditions for the system (4) are 

w = f = T = O ,  a=--  azf ( r = l ) ,  
ar2 

SZ = f = 0  ( r = 0 ) .  

Computational boundary conditions for w and T a t  1’ = 0 are developed in $3  

3. Numerical method 
In  order to obtain an approximate solution to the system (4) of simultaneous 

equations, we must transform them into a system of finite-difference equations 
appropriate for computation on a high-speed computer. We divide the circular 
cross-section of the tube (figure 1) into a grid formed by a set of radial lines that 
cut a sct of circular arcs concentric with the boundary r = 1 .  The nodes are uniformly 
spaced with increment h in the radial direction r ,  and k in the angular direction 9. 
Southwell’s (1946) notation is used for the immediate neighbourhood of a typical node 
(figure 2 ) .  
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The method of approximating equations ( 4 a ,  b, d )  with finite-difference equations 
follows that used in Collins & Dennis (1975). Defining the parameters 

i t  can be shown that the momentum equation leads to the result 

( A  + B + C) h2 
2 + 21qh + h 2 ( 2 / 4  + 21A1k)/k2 ' 

w, = 

( 6 4  

( 6 e )  

1 14 B = - - (w,+w,-22Wo)+- (w2+w4-2w,) , K'  k 

c = 4 .  

Xote that while (6 b)  is completely equivalent to a second-order central-differencing 
method, a doner-cell (second-upwind-differencing) method results if the B-term is 
ignored. I n  a similar fashion, the vorticity equation ( 4 d )  leads to equations identical 
in form with (6b-d), with w,, wl, w2, w3 and w4 replaced by R,, R,, R,, R,, R4 and 

1 w,(w, - w4) sin $, - wo(wl - w3) cos $, [ r,h h 
C = De 

Differencing of ( 4 b )  requires a slight modification of (6a) .  We define 

With these slightly modified parameters, the energy equation leads to  the system of 
relations (6b -d ) ,  with wi, r, A replaced by 

_ _  
q,r,A for i = O  , . . . ,  4 and C=w, .  ( 6 h )  

Central differencing is used on the stream function ( 4 c ) .  The result, using 

(7a) 
D Gauss-Seidel iteration, is 

f F + l =  E'  

where L)  = SZp+l h2+ (7 b )  

2( 1 + h2)  
E =  fom r i  k2 

Vorticity a t  the boundary r = 1 is approximated by the finite-difference form 
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I X 

b. 
FIGTJRE 3. Local neighbourhood of the central mode. 

where the subscript N denotes a node position on the boundary r = 1. This formula 
is the result of central differencing coupled with a no-slip condition (imposed by 

Although the remaining boundary conditions given in ( 5 )  are straightforward, one 
needs to describe boundary conditions for w and T at r = 0. Since the centre point 
r = 0 is multiply defined in toroidal oo-ordinates, natural computational boundary 
conditions are that the values of w and T a t  r = 0 be uniquely defined. In order to 
ensure this, we transform the immediate neighbourhood of the central node into 
Cartesian co-ordinates. 

Transformations of the momentum and energy equations (4a,  b ) ,  into Cartesian 
forms appropriate for this neighbourhood of the central node are 

V N  = 0). 

where x and y are the Cartesian axes through the central node. Using centred 
differencing, we obtain from (9) 

wo = t (wi  + W z + w 3 + w 4 )  -k h2+&[(f2-f4) (wi-?fl3)- (fi-fs) ( W Z - W ~ ) ] .  (10 a )  

T, = a(Tl+T2+T3+T4+h2WO)+~Pr[(f2-f,) (Z-Z)-(f1-f3) (E-531. (lob) 

Equations (10a, b )  are solved for each orientation of the Cartesian axes corresponding 
to a distinct value of @ (figure 3). The multiple co-ordinates of the central node have 
been found to give a unique value of w and T using this method. 

Equations (6)-(S), and (10) are now sufficient to  obtain numerical approximations 
to W ,  T ,  !2 and f for given values of Pr,  De, and ReRa. 
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4. Computational procedure 
The strategy in solving the preceding system of equations is twofold. First, in an 

effort to make the iterative method more stable, a solution to the system (4) is 
calculated with the B-terms ( 6 4  set equal to zero. Once this solution has been 
obtained, it is used as the initial condition for the more-accurate method, whirh 
includes the B-terms. This essentially is the difference-correction procedure of Fox 
(1947) as given in Collins & Dennis (1975). It has both the advantages of the stability 
of an upwind-differencing method and the accuracy of a central-difference method. 
The first solution is also called the uncorrected solution since it is only first-order 
accurate, while the more accurate solution is called the corrected solution. 

A Gauss-Seidel iteration method is used for the momentum, energy and vorticity 
equations as well as for the stream-function equation. At every stage of the 
computation, only the most recent values of the dependent variables are used. The 
iteration sequence is executed in the following order. 

(i) The central node values for w and T are calculated according to (10). 
(ii) The momentum equation is solved according to (6) using the new values for 

w(r = 0), old values off or w, and new values of w as they become available. 
(iii) The energy equation is solved using the new values of w and T(r = 0), old 

values off or T, and new values of T as they become available. 
(iv) The vorticity equation is solved using the new values of w and T, old values 

off or a, and new values of 0 as they become available. 
(v) The stream-function equation is solved according to  (7). 

This sequence is repeated until the solution converges to within a prescribed criterion 
of precision. Since vorticity appears to be the most sensitive variable, we use it to 
define the convergence criterion. If, between two successive iterations, 

p m + l - a m l <  5 x 10-5 (11) 

throughout the computational domain, then we consider the solution to have 
converged. 

Under-relaxation of the iterations has been found to be necessary in ordcr to obtain 
convergence of the solution. Two relaxation parameters w1 and w2 have been 
introduced into the iterations. The second relaxation parameter w 2  is applied only 
to the second-order central-differencing method. It is used in the momentum 
calculation in the following way: 

(A+B+C)m+l = ( A + C ) m + 1 + ~ 2  Bm+l+(l-o2) Bm, (12a) 

where A ,  B and C are defined in (6). Note that A ,  B and C use the most recent values 
of w. For example Bm uses them iteration values for w3 and w4, and the m- 1 iteration 
values for wo, wl, and w2. This relaxation formulation is also used in thc energy and 
vorticity calculations. The first relaxation parameter w1 is used only in the vortivity 
calculation a t  the surface of the tube according to 

az+1 = wl( -2jgp,/h2)+ (1  -wl)  a$$. ( 1 2 b )  

The stream-function calculation is not under-relaxed. The values w1 = 0.25 and 
w2 = 0.05 have been found to be suitable for our range of calculations. 

In  order to help ensure that the computations converge quickly, one must carefully 
consider the choice of initial conditions. For cases of low DP and ReRa, we have used 
the velocity and temperature profiles of Poiseuille flow in a straight tube with a 
constant axial temperature gradient. These cases would provide initial conditions for 
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computations with more moderate values of De and ReRa, which would then 
be used to start computations with even higher values of the two dimensionless 
parameters. Generally we would keep either De or ReRa constant and monotonically 
increase the other parameter in order to demonstrate clearly the effect of variation 
of one parameter against the other. The range of our computations covers the values 
0 < De < 31250 and 0 < ReRa < 20000. For heated straight-tube flow (De = 0), 
ReRa was extended up to 50000. I n  all cases, we set Pr = 1 .  

Since the dividing streamline between the two vortices is generally not a straight 
line, symmetry along the dividing streamline cannot be used as a boundary condition. 
As a result, our computational mesh covers the entire cross-section of the tube. I n  
order to keep computation times moderate, we have chosen the values h = 0.05 and 
k = &m for our mesh. With this grid size, 200 to  400 s on a CDC 175 are required to 
obtain converged solutions. 

The accuracy of our corrected solutions may be judged from the results of Collins 
& Dennis (1975), since our computational methods are essentially the same. A direct 
comparison is readily made using the lowest friction-ratio curve of figure 4, which 
corresponds to ReRa = 0. This curve can be seen to lie very close - within 0.8 yo - to 
the results of Collins & Dennis. It appears that  for the case ReRa = 0, our results 
essentially duplicate those of Collins & Dennis, and thus are unlikely to be in error 
by more than 1 or 2 yo. Although direct comparisons for the non-zero values of ReRa 
are not possible, some evidence of the accuracy of these solutions is given by 
comparison of the uncorrected and corrected solutions. It is found that the uncorrected 
solutions for larger values of ReRa differ from the corrected solutions by less than 
6 Yo. Since the corrected solutions are considerably more accurate than the uncorrected 
solutions, we conclude that in all cases our corrected solutions should be in error by, 
a t  the very most, 5%, and likely are in error by no more than 1 or 2%. 

All results described in $5 are based on the centra-difference corrected solution. 

5. Results and discussion 
The effects of buoyancy on the flow and heat transfer through curved tubes 

manifest themselves in several ways. Most obvious are variations in the values of 
global parameters such as in the friction coefficient y or total heat flux Q. Less 
observable, though often pronounced, are variations a t  a local level, such as positions 
of maximum heat transfer or shear stress. 

5.1 Ilntio of coefjicients of fr iction 

Results of the present analysis are best compared with previous work by examining 
the calculated values of yc /ys ,  which is the ratio of the coefficients of friction for a 
curved and a straight tube respectively, for varying values of De and ReRa. I n  order 
to match our data precisely with earlier results, we choose to present the data with 
respect to the modified Dean number as presented in Collins & Dennis (1975): 

K = 2a4 Re,, 

where Re, is modified Reynolds number based upon a mean axial velocity (recall 
that CL = a /R) .  Letting the dimensionless volume rate of flow be denoted by W M ,  
with 

W M  = 4 j' j Z n  wr dr  d*, 
m o o  
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log K 

FIGURE 4. Variation of the friction ratio y c / y s  with K and ReRa 

which is calculated in the numerical solutions, we find Re, = Re W M .  Thus we can 
calculate K according to the expression 

K = 2 WMDe;. (13) 

Since w = 1 - r2 is the axial-velocity distribution for straight-tube flow and since 
i t  may be shown that yc/ys = WM,/ WM, where W M ,  is the volume rate of flow 
through a straight tube corresponding to a given pressure gradient G, we obtain 

yc /ys  = 0.51 W M .  (14) 

The variation of the ratio of friction coefficients with K and ReRa is shown in 
figure 4. The curves of constant ReRa demonstrate a very simple result; that ReRa 
acts like De in that the ratio of friction coefficients increases with increasing ReRa. 
This is because of the effect that buoyancy will act to increase the magnitude of the 
secondary flow beyond that which is expected from centrifugal force alone. More 
kinetic energy of the flow is directed into the secondary flow, and as a result frictional 
losses increase. For a given ReRa, as De increases, the flow becomes ever more 
dominated by the centrifugal force. Eventually the contribution to the secondary flow 
by the buoyancy force becomes negligible. For this reason, the curves of constant 
ReRu approach the lowest or base curve for ReRa = 0 asymptotically as De --f co. 
From a practical viewpoint it is observed, for a given ReRa, that  once De has 
increased beyond a certain value the flow is dominated completely by the centrifugal 
force. In this regime, the influence of buoyancy is unimportant and the momentum 
and energy equations may safely be considered to be uncoupled. 

Note that the effects of buoyancy on the friction coefficient for a straight tube may 
be calculated simply by setting De = 0 for non-zero ReRa. Such computations have 
been carried out and compare favourably with the perturbation analysis developed 
by Morton (1959). Morton claims that his solution, bascd on a three-term series, is 
accurate to within 10 yo up to ReRa = 3000. Our numerical computations of the ratio 
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FIGURE 5 .  Variation of the friction ratio y b / y s  with ReRw in straight tubes. 

of the coefficients of friction are compared directly with the perturbation result 

yb/ys = 1 +0.4202 ( R e R ~ / 4 6 0 8 ) ~ +  . . . (Morton 1959) 

in figure 5. Here Yb is the friction coefficient for flow through a straight tube with 
buoyancy, for a given pressure gradient. Morton's result is seen to overpredict y b / y s  
compared with our results by 

( i )  1 "i, a t  ReRa = 1000, 
(i i)  50/, a t  ReRa = 2000, 
(iii) 12% at ReRa = 3000. 

For ReRa > 3000, the higher-order terms not computed by Morton become very 
important. Consequently, the perturbation result diverges rapidly from the numerical 
result. Note that the increase in the ratio of the coefficients of friction with ReRa, 
as explained for figure 4, is clearly demonstrated. 

The present numerical results can be observed to extend well beyond the range of 
validity of the perturbation solution for global shear stress by Yao & Berger (1978), 
since the perturbation solution predicts yc /ys  = 1. 

5.2 Ratio of average ?beat-transfer rates 
The second global parameter of interest is the total heat flux &. Denoting the 
dimensionless local heat-transfer flux q by 

we define the total or average heat flux Q as 



0- 

Q l o g 2  0. 
QC 

I I 

/ 
------- ReRa = 20000 

1.2 1.4 1.8 2.0 4 1 6 1.8 2.0 
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log K 

FIGURE 6. Variation of average heat-transfer ratio &,/&, with K and ReRa. 

Both Q and q are calculated in the numerical solutions. Note that the local and 
average Nusselt number Nu may be computed readily from the dimensionless q(+) 
and Q according to 

Nu(+) = -Peq(@),  Nu,, = -PeQ.  

We choose T = &(3-4r2+r4),  as is standard, to be the temperature distribution 
for straight-tube flow with a constant axial temperature gradient 7. From this, we 
determine that the ratio of average heat-transfer rates is 

QJQ, = 05?5/Q, (18) 

where Q, and Q,  are the heat-transfer rates for a straight (with no buoyancy and 
curved tube respectively, for a given pressure gradient G. 

The variation of the ratio of average heat fluxes with K and ReRa is shown in 
figure 6. Note the striking resemblance to figure 4.  Again i t  becomes clear that  the 
effect of ReRa is similar to that of De. An important difference when compared with 
the friction coefficient is that the average heat-transfer rate decreases with increasing 
ReRa or increasing De. This result apparently contradicts many earlier works. We 
observe that the average heat-transfer rate decreases because the volume rate of flow 
decreases for increasing ReRa or De for a given pressure gradient. The volume rate 
of flow must decrease because the friction coefficients increase as shown in figure 4. 
Again, we conclude that the magnitude of the secondary flow increases with ReRa. 
One further observation from figure 6 is that the curves of constant ReRa approach 
asymptotically the lowest or base curve corresponding to ReRa = 0. The reasoning 
for this behaviour is precisely the same as given for the friction-coefficient curves of 
figure 4.  As De increases, the centrifugal force begins to dominate the buoyancy force. 

For straight tubes, we compare in figure 7 the numerical computations of the ratio 
of average heat transfer rates with Morton’s perturbation result ( 1959) 

Qb/Qs = 1 -0.2100(ReR~/4608)~ + 
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1.3 - - numerical result --- perturbation result 

1.2 - 

e , -  

1.1 - 

ReRa 

I I 1  1 / 1 1  

10000 30000 
ReRa 

FIGITRE 7 Variation of the average hpat-transfer ratio f&/@,, with RpRn in straight tiibw. 

Here Qb is the average rate of heat transfer for flow through a straight tubc with 
buoyancy, Sor a given pressure gradient. Again, Morton's result overpredicts Qs/Qb 

by 
( i )  1 yo a t  ReRa = 2000, 
(i i)  576 a t  ReRa = 3000, 
(i i i)  11 yo a t  ReRa = 4000. 

For ReRa > 4000, the missing higher-order terms cause the perturbation result to 
diverge rapidly from the numerical result. Notc the decrease in Qb/Qs with IZrlZa. 
due to the decrease in volume flux. 

The perturbation solution by Yao & Berger (1978) predicts that  Qs/Qb = 1 .  
Consequently, the present numerical results extend well beyond the range of validity 
of the perturbation solution for global heat-transfer rates. 

5.3 Dimrnsionless stream funrtion 

A third global variation, one which vividly portrays the interaction of the 
centrifugal and buoyancy forces, is brought out in a plot of lines of constant strc3am 
funcstion f .  

In  figure 8 ( a ) ,  lines of constant stream function are plotted for the casc I&Ru = 0, 
De = 660. I n  this case, only the centrifugal forre is present and its action is to forw 
the central core towards the outcr bend. This results in a stagnation-point flow at  + = 90°, with fluid moving away along the wall. Two vortices, opposite in sign and 
equal in magnitude, occur with a dividing streamline being the diameter through 

In figure 8 ( b ) ,  lines of constant stream function for i he case ReRa = 5000, I l e  = 0 
are plotted. Only the buoyancy force is present in this case. Our thermal boundary 
cwndition is that of a constant axial temperature gradient. Furthermore, thc ratc, of 
heat transfer from the wall to the core is finite. As a result, fluid in the core is cooler 

+ = goo. 
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180" 180" 

( C )  0" 

,$'rcr~~s 8. Lines of constant stream function: (a )  RcRa = 0, L)e = 660; (b )  ReRa = 5000, 
D e  = 0; (c) ReRa = 5000, D e  = 660. 

and denser than fluid near the walls. Under the influence of a gravitational field, the 
central core falls towards the bottom of the tube at $ = 0'. A stagnation-point flow 
is developed there with fluid moving away along the walls, getting hotter as it moves 
up along the walls. Again, two vortices, opposite in sign and equal in magnitude, are 
developed with a dividing streamline being the diameter through $ = 0'. 

When both centrifugal and buoyancy forces are important, the result is to turn 
the dividing streamline to  an angle intermediate between $ = 0' and $ = 90'. Also, 
the dividing streamline is, in general, a curved line through the centre. This effect 
is demonstrated in figure 8 ( c ) ,  where lines of constant stream function for the case 
ReRa  = 5000, De = 660 are plotted. 

5.4 Local effects 

It is known that stalgnation-point flows increase the local heat-transfer rates. Points 
of separation have an opposite effect. Since buoyancy effects help to determine the 
positions of the stagnation and separation points along the wall, buoyancy must be 
a factor in the local variation of heat-transfer rates. Our computations have revealed 
that this is indeed the case. 

In  addition, the local variation of axial shear stress T,, and circumferential shear 
stress T ~ +  depend upon KeRa as well as De. These shear stresses are calculated in our 
numerical solutions according to 

The point of maximum axial shear stress tends to follow the stagnation point 
closely. This is because the maximum axial velocity always tends to  be along the 
dividing streamline. The point of maximum circumferential shear stress is generally 
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ReRa 

FIGURE 9. Position of maximum heat transfer. 

located 9 0 O  or less away from the stagnation points, for this is where the secondary 
velocity v assumes its greatest magnitude. 

The numerical computations of the points of maximum heat transfer and axial 
shear stress are compared directly with the perturbaiion results of Yao & Berger 
(1978). The maximum points are interpolated from the numerical data and should 
be accurate to & 2". 

Positions (denoted by $max) of maximum heat transfer and axial shear stress are 
compared in figures 9 and 10 respectively. Here the curves represent lines of constant 
De. The most striking observation is that  the numerical results, for the most part, 
do not differ appreciably from the perturbation results given in Yao & Berger (1978) 
as 

(3 + 8.05 PY) 2De 
(1 + 2.16 Pr) %a lCIrnax = arctan 

for positions of maximum heat transfer 
6De 

$rnax = arctan ~ 

ReRa 

for positions of maximum axial shear stress. This is due to the fact that  $,,, depends 
only upon the ratio of De to  ReRa and not upon the absolute magnitudes of these 
parameters. It appears that the perturbation result is capable of giving quantitatively 
good values for over a large part of the ReRa and De range covered by the 
numerical computations. Only for the larger values of ReRa and intermediate values 
of De does kmaX, as predicted by the perturbation solution, diverge noticeably from 
the numerical results. One further observes from the figures that all curves begin near 
@,,,,, = 90". In  this region ReRa is small. As a result, the centrifugal force dominates 
the buoyancy force and = 90" that occurs is little different from the valuc 
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FIGVRE 10. Position of maximal axial shear stress. 

for curved tube flows without buoyancy (ReRa = 0). At this limiting case, the 
numerical and perturbation results match exactly. Since we anticipated that thc 
perturbation solution would match closely the numerical results for smaller values 
of ReRa, the first non-zero value of MeRa calculated was ReRa = 1000. As the 
strength of the buoyancy force increases, the dividing streamline rotates towards 
$ = 0'. This causes $.,,, to decrease towards 0'. Eventually, the centrifugal force 
is dominated by the buoyancy force, and pmax is little different from the valuc 
+,ax = 0' that  occurs for flow through straight tubes where there is no centrifugal 
force. As De increases, the curves are seen to remain near 90' for a larger distance 
before dropping towards 0'. The reason is simply that the buoyancy force has to 
match and overcome a more powerful centrifugal force before it can significantly alter 
the flow and heat-transfer rates. 

The numerical values for positions of maximum circumferential shear stress are 
shown in figure 1 1  in the form of curves of constant De. One observes that all curves, 
with the exception of De = 0, begin somewhat above Oo, with the distance above 0' 
increasing with DP.  These initial points represent flows without buoyancy force 
present. As Ue increases, the vortex centres, or points of maximum circulation, are 
pushed by the wntrifugal force towards the outer bend of the tube. This results in 
movement of the points of maximum circumferential shear stress towards the outer 
bend, or from $ = 0' towards $ = 90'. 

The entire curve De = 0 represents flow without centrifugal force. Here the 
maximum point is observed to increase from $ = 270' as the buoyancy force 
increases. The increasing buoyancy force pushes the vortex centres towards the 
bottom of the tube. As a result, @.,,, increases from $ = 270' towards $ = O'as RpRa 
increases. 

With increasing ReRa, the curves of constant non-zero De decrease towards the 
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curve DP = 0. Thus the pure buoyancy case acts as a limiting case, which the other 
curves approach asymptotically as ReRa - I  co. This is simply due to the continued 
growth of thc buoyancy force. First, the centrifugal force dominates the buoyancy 
h w ~ ,  and the curve remains far above the pure buoyancy curve. As the buoyancy 
forw grows, thv mrve drops. Finally, as the buoyancy force begins to  dominate the 
centrifugal forcc, the curvc flattens out and slowly approaches the curve for DP = 0. 

Thc curve Ue = 40 represents an interesting case. Since the centrifugal force is very 
small, it quickly becomes dominated by the increasing buoyancy force. As a result, 
the curvc drops so steeply that i t  approaches the pure buoyancy case before that curve 
has finished its initial period of rapid rise. Thus the De = 40 curve first decreases and 
then gradually increases in conjunction with the De = 0 curve. 

5.5. Regional Map 

In  figurc 12, we consider the (MeRa, K)-plane, which is seen to be separated into three 
distinct regions. The first region I is where the centrifugal force dominates. Here the 
momentum and energy equations may be treated as though they are uncoupled. In  
the second rcgion I I  both buoyancy and centrifugal forces are important. As a result, 
problems that fall into this region need to be dealt with by using the general 
equations (4). The third region I I I  represents a simplification of the heated- 
curvetl-tube problem. Here buoyancy force dominates the centrifugal force. Thus 
problems which lie in this region may be treated as though a straight tube with 
buoyancy forces were being investigated. 

Our criterion for establishing the boundaries of these regions is a 5 yo variation in 
the value of the average heat-transfer rate Q from the values to be expected for flow 
with only centrifugal force or flow with only buoyancy force. 

Sotc  that the regional map essentially summarizes the major point of this paper; 



ReRa 

FIGCRE 12. Regimes of flow. 

that  is, buoyancy affects both global and local variables characterizing flow through 
heated curved tubes. However, the centrifugal and buoyancy forces are not always 
of the same order of magnitude. When the buoyancy force is weak, i t  may be 
dominated by the centrifugal force, and vice versa. 
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